The Popular Roommates problem

نویسنده

  • Telikepalli Kavitha
چکیده

We consider the popular matching problem in a roommates instance G = (V,E) with strict preference lists. While popular matchings always exist in a bipartite instance, they need not exist in a roommates instance. The complexity of the popular matching problem in a roommates instance has been an open problem for several years and here we show it is NP-hard. A sub-class of max-size popular matchings called dominant matchings has been well-studied in bipartite graphs. We show that the dominant matching problem in G = (V,E) is also NP-hard and this is the case even when G admits a stable matching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Popular Matchings in the Marriage and Roommates Problems

Popular matchings have recently been a subject of study in the context of the so-called House Allocation Problem, where the objective is to match applicants to houses over which the applicants have preferences. A matching M is called popular if there is no other matching M ′ with the property that more applicants prefer their allocation in M ′ to their allocation in M . In this paper we study p...

متن کامل

Popular Matching in Roommates Setting is NP-hard

An input to the Popular Matching problem, in the roommates setting, consists of a graph G and each vertex ranks its neighbors in strict order, known as its preference. In the Popular Matching problem the objective is to test whether there exists a matching M such that there is no matching M where more people are happier with M than with M. In this paper we settle the computational complexity of...

متن کامل

Max-size popular matchings and extensions

We consider the max-size popular matching problem in a roommates instance G = (V,E) with strict preference lists. A matching M is popular if there is no matching M ′ in G such that the vertices that prefer M ′ to M outnumber those that prefer M to M ′. We show it is NP-hard to compute a max-size popular matching in G. This is in contrast to the tractability of this problem in bipartite graphs w...

متن کامل

An Upper Bound for the Solvability Probability of a Random Stable Roommates Instance

It is well-known that not all instances of the stable roommates problem admit a stable matching. Here we establish the first nontrivial upper bound on the limiting behavior of P,,, the probability that a random roommates instance of size n has a stable matching, namely, limn-P,, I el% (=0.8244. . .).

متن کامل

Representing roommates' preferences with symmetric utilities

In the context of the stable roommates problem, it is shown that acyclicity of preferences is equivalent to the existence of symmetric utility functions, i.e. the utility of agent i when matched with j is the same as j’s utility when matched with i. © 2007 Published by Elsevier Inc. JEL classification: C78

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018